Code Migration &
Memory Safety

CRESP Industry Day, November 14, 2024
Per Larsen, Immunant, Inc.

Who?

- Immunant, Inc.
- Code migration from C to Rust
- Prevention of memory corruption vulnerabilities
- Rust training £
- Per
- CEO at Immunant, Inc.
- Postdoc at University of California, Irvine
- PhD from Technical University of Denmark g=

.
Immunant

BADIIIIIIII
PRACTICES

7777777

https://www.cisa.qgov/resources-tools/resources/product-security-bad-

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

BAD. 11114/

Development in Memory Unsafe Languages (CWE'*/-119- and related

weaknesses)

The development of new product lines for use in service of critical infrastructure or NCFs in a memory-unsafe
language (e.g., C or C++) where there are readily available alternative memory-safe languages that could be used is_

dangerous and significantly elevates risk to national security, national economic security, and national public health

and safety.

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

BAD. 11114/

BN A

For existing products that are written in memory-unsafe languages, not having a published memory safety roadmap

by January 1, 2026 is dangerous and significantly elevates risk to national security, national economic security, and

national public health and safety. The memory safety roadmap should outline the manufacturer’s prioritized

approach to eliminating memory safety vulnerabilities in priority code components (e.g., network-facing code or

code that handles sensitive functions like cryptographic operations). Manufacturers should demonstrate that the
memory safety roadmap will lead to a significant, prioritized reduction of memory safety vulnerabilities in the
manufacturer’s products and demonstrate they are making a reasonable effort to follow the memory safety

roadmap.

Memory safety

- Means that software or a programming language is designed to catch
memory bugs

Memory safety helps avoid

- Security Vulnerabilities

60-90 percent of software flaws in memory unsafe languages
High fraction of zero-day vulnerabilities

- Program Instability
- Difficult Debugging and Maintenance

Can we make existing C/C++ code memory safe? @

In principle, yes. In practice...

Can we make existing C/C++ code memory safe? @

Work to make C/C++ safe includes

Static analysis (Clang Static Analyzer, Coverity, CppCheck, ...)

Exploit mitigations (ASLR, CFI, guard pages, allocator hardening, ...)
Sanitizers (ASan, UBSan, MemorySanitizer, ThreadSanitizer, GWPAsan, ...)
Hardware-assisted techniques (MTE, PAC, PKRU, MPX, CET, CHERI, ...)
Modern C++ (std::unique_ptr, std::shared_ptr, std::weak ptr, ...)

Language dialects (Cyclone, CheckedC, CCured)

Can we make existing C/C++ code memory safe? @
performance

compatibility security

Can we make existing C/C++ code memory safe? @

Can we make existing C/C++ code memory safe? @

Microsoft: 70% of all vulnerabilities in their products over the last decade have
been memory safety issues

100%

2006 2007 2008 2009 2010 20M 2012 2013 2014 2015
Patch Year

B Memory safety B Not memory safety

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-lanquage

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language

Can we make existing C/C++ code memory safe? @

e Google: 90% of Android vulnerabilities are memory safety issues

e Apple: 60-70% of vulnerabilities in iOS and macOS are memory safety
vulnerabilities

e Alex Gaynor: more than 80% of the exploited zero-day vulnerabilities were
memory safety issues

https://security.googleblog.com/2019/05/queue-hardening-enhancements.htm
https://lanqui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://langui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

Can we make existing C/C++ code memory safe? @

https://security.googleblog.com/2019/05/queue-hardening-enhancements.htm
https://lanqui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://langui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

Chromium’s Rule of Two

Z2ode operatinyg
on untrusted
inputs

DOOM

N _\ .
. N . \/

Code written T — — ,Code not run

in an unsafe - in sandbox

language , (high privilege

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Chromium’s Rule of Two

Z2ode operating
on untrusted
inputs

MIGRATE ISOLATE

\ 7
.\ Y
-—-/;/ Code not

running in
sandbox

-
Code written
in an unsafe
language

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

When to migrate and when to isolate?

MIGRATE <— @ — » ISOLATE

Buy-in from current developers Software isolation overheads tolerable
Expertise in source & target language - Hardware isolation feasible
Resources available to do the porting - Cannot support original and rewritten

Resources available to maintain port versions of same component

When to migrate and when to isolate?

MIGRATE <— @ — » ISOLATE

productivity gains meaningful security
from modern benefits in less time
languages

When to migrate and when to isolate?

MIGRATE <— @

- Decide on a memory safe language

- Chromium’s strategy
Java for Android-specific code
Swift for iOS-specific code
Rust for third-party use
JavaScript or WebAssembly

- C# good option for Microsoft-specific code
- Swift for Apple-specific code

When to migrate and when to isolate?

MIGRATE <— @

Step 1: Decide what to migrate

When to migrate and when to isolate?

MIGRATE <— @

Step 1: Decide what to migrate

https://www.usenix.org/system/files/sec22-alexopoulos.pdf

When to migrate and when to isolate?

MIGRATE «+—

How Long Do Vulnerabilities Live in the Code? A Large-Scale Empirical
Measurement Study on FOSS Vulnerability Lifetimes

Nikolaos Alexopoulos, Manuel Brack, Jan Philipp Wagner, Tim Grube and Max Miihlhduser
Telecooperation Lab, Technical University of Darmstadt, Germany

Abstract
How long do vulnerabilities live in the repositories of large,
evolving projects? Although the question has been identified
as an interesting problem by the software community in on-
line forums, it has not been investigated yet in adequate depth
and scale, since the process of identifying the exact point in
time when a vulnerability was introduced is particularly cum-
bersome. In this paper, we provide an automatic approach
for accurately estimating how long vulnerabilities remain in
the code (their lifetimes). Our method relies on the observa-
tion that while it is difficult to pinpoint the exact point of

Reducing the number of vulnerabilities in software by find-
ing existing ones and avoiding the introduction of new ones
(e.g. by employing secure coding practices or formal verifica-
tion techniques) is one of the primary pursuits of computer
security.

Measurement studies on the different stages of the vul-
nerability lifecycle play an important role in this pursuit, as
they help us better understand the impact of security efforts
and improve software security practices and workflows. The
community has produced a number of such outputs in recent
years [5,8, 14, 18,23,28, 36]. A vulnerability’s lifecycle, or

https://www.usenix.org/system/files/sec22-alexopoulos.pdf

When to migrate and when to isolate?

MIGRATE <«—
,. 0.0006
2
£ 0.0004
2
5 0.0002 || ‘
o)
e Il +
a 0.0000 ‘ IHI‘ ‘ H\ Titht e

1000 2000 3000 4000
Lifetime (days)

—— Exponential fit
—— Median
— Mean

5000 6000 7000

When to migrate and when to isolate?

MIGRATE «+—

1. Most memory safety problems in new code

2. Code gets safer over time, exponentially

https://security.goodleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

When to migrate and when to isolate?

MIGRATE <— @ — » ISOLATE

Total Memory safe and Memory Unsafe Lines of Code in AOSP
B Memory safe [Memory Unsafe Number of Memory Safety Vulns per Year

250
200

150

Total

100

Total Lines of Code

50

0
2019 2020 2021 2022 2023 2024 2019 2020 2021 2022 2023 2024

Year year

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

When to migrate and when to isolate?

MIGRATE «+—

Gradual migration — language interoperability

Different memory management models
Different type systems
Different exception handling mechanisms

Different meta-programming facilities
Different build systems

e ¢ ¢ 6 o o o
O
=h
Q)
]
0)
-]
—=
o
Q
—
Q
)
—
-3
C
9]
—
-
-
()
)
<
®)
c
—
()]
Q
2
o
-
D
©
-
)
2]
Q)
>
—
Q
=
®)
>
w

When to migrate and when to isolate?

MIGRATE «+—

Gradual migration — language interoperability

e Interoperability with C is doable
o Simple type system < complex type system
o bindgen and cbindgen for Rust

e Interoperability with C++ is hard

o Complex type system < complex type system
o Cxx, autocxx, Crubit for Rust

How to migrate a particular module/feature/library?

MAN UALLY UNSAFE TRANSLATION
AUTOMATICALLY
- Best when existing code is poorly - Best when existing code is high quality
structured or lacks sufficient tests and tests have high code coverage
- Not all features need to be ported - Drop-in compatibility desired

- Need to keep up with upstream

rr PROSSIMO Support this Work

How to migp ry?
The First Stable
MA Release of a Memory

Safe sudo ALLY

Best when exi Implementation code is high quality

structured or la Josh Aas code coverage

Aug 29, 2023
Not all feature - | desired
Prossimo is pleased to announce the first stable release of sudo-rs, our

Rust rewrite of the critical sudo utility.

h upstream

The sudo utility is one of the most common ways for engineers to cross
the privacy boundary between user and administrative accounts in the

ubiquitous Linux operating system. As such, its security is of the utmost
importance.

The sudo-rs project improves on the security of the original sudo by:
¢ Using a memory safe language (Rust), as it's estimated that one out
of three security bugs in the original sudo have been memory

management issues

e Leaving out less commonly used features so as to reduce attack
surface

e Developing an extensive test suite which even managed to find bugs
in the original sudo

How to migr

MA

Best when exi
structured or la
Not all feature

rr PROSSIMO

Support this Work

Porting C to Rust for a
Fast and Safe AV1
Media Decoder

Stephen Crane
Sep 9, 2024

dd Aviisan increasingly important video format and it needs a
memory safe, high performance decoder. We worked with the
team at Immunant to develop ravld, a Rust-based port of david,
a C decoder. This is the first of two blog posts about how the
team approached this effort.

— Josh Aas, Head of ISRG's Prossimo project

Complex data parsing is one of the most security-critical operations in
modern software. Browsers must decode untrusted audio and video
inputs encoded with extremely complicated formats in real time.
Memory safety bugs in this decoding process are disastrous and
common. For example, researchers fuzzing H.264 decoder
implementations have demonstrated that these decoders are a
dangerous source of bugs. AV1 is a similarly complex, widely used video
format. We need a memory safe, performant implementation of AV1
format parsing to avoid parsing vulnerabilities in heavily targeted
software such as browsers.

To create this fast and safe AV1 decoder, we have ported an existing high
performance AV1 decoding library, davld, from C to Rust: ravld. Our
implementation is drop-in compatible with the davld C API. Format

AR AL SR e StRResaac oo ol SR R ST one TRl iGl S o s Bal L dee i Rt ARl &

ry?

ALLY

code is high quality
code coverage
desired

h upstream

Quick aside on Internet Security Research Group ||S|R@

Funders

Google

{7 FUTUREWEI

Technologies

Sovereign
TechFund

.& Chainguard

dWs

oo
CISCO

Alpha-[lmega

CLOUDFLARE

craig newmark philanthropies

) shopify

Josh Aas (Co-Founder) Sarah Gran (VP of Comms)

https://www.memorysafety.org/ and https://isrg.org/

https://www.memorysafety.org/
https://isrg.org/

Porting dav1d from C to Rust using c2rust

O immunant / c2rust

Code (©) Issues 239 1 Pullrequests 43 L) Discussions () Actions [Projects

&y
< T s - °
c 95{0, s o c2rust Public Edit Pins ~ ® Unwatch 55 ~ % Fork 242
u W Starred 4k <
Unsafe C Transpiler Unsafe Rust
¥ master ~) »:, Go to file + <> Code ~ About
Migrate C code to Rust
kkysen Upda
&
.github/workflows Update CI workflow to us...
Rewriting analysis Disable test_ref_field whi...
c2rust-analyze analy add comment ab...
Readme
c2rust-asm-casts Use workspace i... last year
View lice
N I
a S c2rust-ast-builder e.pa last year Activity
Intermediate Rust K Improved Rust c2rust-ast-exporter ix fault due to failing ... 3 weeks ag LB (I A
c2rust-ast-printer
Refactoring c2rust-bitfields-derive

c2rust-bitfields

C2Rust transpiler example inputs and outputs

2
| C source code

(Generated Rust source code 1

1~ void insertion_sort(int const n, int * const p) {

2
3~ for (int i = 1; 1 < n; i++) {

4 int const tmp = p[i];

5 int j = 1i;

6~ while (j > @ && p[j-1] > tmp) {
7 p[i] = p[3-11;

8 i--3

9 }

10 p[i] = tmp;

11 }

12 Y

Upload Load Sample

ik 7#![allow(dead_code, mutable_transmutes, non_camel_case_types, non_snake_case, nol
2 #[no_mangle]
3~ pub unsafe extern "C" fn insertion_sort(n: libc::c_int, p: *mut libc::c_int) {

4 let mut i: libc::c_int = 1 as libc::c_int;

S while i < n {

6 let tmp: libc::c_int = *p.offset(i as isize);

7 let mut j: libc::c_int = i;

8~ while j > @ as libc::c_int & *p.offset((j - 1 as libc::c_int) as isize)
9 *p.offset(j as isize) = *p.offset((j - 1 as libc::c_int) as isize);
10 j -= 1;

1 i;

1172 }

13 *p.offset(j as isize) = tmp;

14 i+=1;

15 i

16 }

17 }

18

Download output.rs

Try it out at https://c2rust.com or https://github.com/immunant/c2rust

https://c2rust.com
https://github.com/immunant/c2rust

C2Rust transpiler example inputs and outputs

C source code Generated Rust source - de

1~ void insertion_sort(int const n, int * const p) { 1 #![al"- utable_transmutes, non_camel_case_types, non_snake_case, nol

2 2
3= for (int i = 1; 1 < n; i++) { “n insertion_sort+/n: libc::c_int, p: *mut libc::c_int) {
4 int const tmp = p[i]; int=1o0°" s_int;
5 int j = 1i;
6~ while (7 > 0 && p[j-1] > tmp) { as isize);
7 p[i] = p[i-11;
8 J==3 ‘set((j - 1 as libc::c_int) as isize)
9 } t((j - 1 as libc::c_int) as isize);
10 p[i] = tmp;
11 }
12
. as isize) = tmp;
I I
i;

17 }
18

Upload Load Sample Download output.rs

Try it out at https://c2rust.com or https://github.com/immunant/c2rust

https://c2rust.com
https://github.com/immunant/c2rust

Porting dav1d from C to Rust using c2rust

e |Initial transpile took almost no time (~1 day)
o Transpilation was beneficial w.r.t. testing & tracking upstream changes
o Transpiler output was ~5x as verbose as input C code
e ~90% time spent “cleaning up” the transpiler output (~12mos)
o Full test suite run on each commit to catch regressions early
o Extensive use of C preprocessor macros presented a challenge
o Threading patterns difficult to translate to Rust efficiently
e ~10% time spent optimizing, handling language differences, Cl config, etc.
o Difficult to track down where we lost performance vs. the C version

m Currently seeing a ~6% overhead on x86_64
o Details https://www.memorysafety.org/blog/ravid-performance-optimization/

https://www.memorysafety.org/blog/rav1d-performance-optimization/

Porting dav1d from C to Rust using c2rust

e |Initial transpile took almost no time (~1 da* E
o Transpilation was beneficial w.r.t. te'a’r = 0
e ~90% time spent "’ cleanlr"“

o Full test suite rn*
o Extepc’

o Threal P‘
o ~10% time w

o Difficult t 133 Cl config, etc.
e P\\:)\N ERC'

OS'*

Lifting C code to Safe Rust

- Use static analysis to identify lifting
opportunities

- Use dynamic analysis to augment
static analysis

- Combine results in to pointer
derivation graph

- Assign permissions to pointers

- Rewriting engine maps C types to

safe Rust types

Tmunant | galois]|

Unsafe C C2Rust Transpiler

AN k.
¥
s
&,
(06
(,,1

Test Suite

L

Fuzz
Tester

Programmer

Trace Execution
Processing Traces

Rewrite Inferences
@ j
b @ < Q %
ewriting Stage
Safefr) Rust

XTI

¥
e
= ==
T
aE—— S
_g—

=
=

S

=) [l

s \ Unsafe

Rust

L
L B
At
: : -
-
Ad

Dynamic
Analysis

Pointer Derivation
Graph

Static
Analysis

Lifting C code to Safe Rust

- Use static analysis to identify lifting
opportunities

- Use dynamic analysis to augment
static analysis

- Combine results in to pointer
derivation graph

- Assign permissions to pointers

- Rewriting engine maps C types to

safe Rust types

Tmunant | galois|

Write Unique Free Offset Ptr type
&T
v v &mut T
v Cell<T>
v &[T]

v 4 4 &mut [T]

I X v/ Box

VI X v v Box<[T]>

Heap Allocations

pub fn buffer_init() -> DynOwned<Box<buffer>> { pub struct buffer {
// was: calloc(1, size of::<buffer>()) // was: *mut i8
let b: DynOwned<Box<buffer>> = pub ptr: Option<DynOwned<Box<[i8]>>>,
DynOwned: : new(Box: :new(buffer { pub used: u32,
ptr: None, pub size: u32,
used: 0, }
size: 0,
1)

return b.take();

(DynOwned<T> tracks ownership dynamically, like Option<T>)

Tmunant | galois|

-H’

Heap Allocations

pub fn buffer_init() -> DynOwned<Box<buffer>> { puh wffer‘ {
// was: calloc(1, size of::<buffer>()) ut 18
let b: DynOwned<Box<buffer>> = 0 tr: Option<DynOwned<Box<[1i8]>>>,
DynOwned: : new(Box: new(bufF" R pub used: u32,

ptr: None, “ pub size:
used: 0 “0
,eCR gis N

} return b.take(A“ ?Ac"o

(DynOwned<T> trR snip dynamically, like Option<T>)

mmunant x | galois|

DARPA TRACTOR

TRACTOR

TRANSLATING ALLCTORUST

https://www.darpa.mil/program/translating-all-c-to-rust

https://www.darpa.mil/program/translating-all-c-to-rust

Current state of the art (not all transl

DARPA

ations are equally good)

Bug-for-bug
compatible (will
crash if args are
missing)

IFic 13 9

main(int argc, char **argv) {
printf(“"Hello, %s\n", argv[1]);

1 Q

int‘

fn main() {
let name
.unwrap_or(&String: :from(

std::env::args().nth(1)
)i

println!("Hello, {}", name);

Supplies empty
string if missing
arguments

Distribution Statement A. Approved for public releass

1 tion (v

ANV

' canel_case_types,

unused mut))

#!|al low(dead_c
upper

e, mutable_transmutes, non_ non_

non case globals, unused assignments,
#!|register tool(cirust)]|
8! | feature(register tool))

extern "C" {

o printf(_: “"const beiic_char, _t ...) > besic_int;
unsafe fn main @
mutl argc: ciic_int,
nut argv: *mut *sut 1ibc::c char,
$1C_int ¢

b "Hello, Zs\n\@" as *const as “const be:ic_char,
*argv.offset(1 as libcic_int as fze)
L H
return 8;
pub fn main() |
let mut args: v <*mut | ¢_char> = tnew
for arg in ::st visargs(
Args. push(
£ (iinew(arg))
xpect(“Failed to convert argument into (String.")
raw(),
}
args.push(:istdaiiptriioull_mut());
unsafe (
11std: sprocess: sexit(
nain o
(args.len() - 1) as libci:ic_int,
args.as_mut_ptr() as "sut *sut libciic_char,
) as 132,
)

'
dbtul;uyu 1 5 unlimited

28

When to migrate and when to isolate?

@ — » ISOLATE

- Hardware-based isolation
- CHERI
- TrustZone
- Intel SGX
- AMD SVM
- (Apple Secure Enclave)

When to migrate and when to isolate?

@ — ISOLATE
t

- Hardware-based isolatirr P‘B\f

- CHERI 1

- Trust7" ?OR ??

Y é“\o"?\oss DBRS

- (Applé P‘GROCEQS
'

When to migrate and when to isolate?

@ —» ISOLATE
- Virtualization

- Android Virtualization Framework

- https://source.android.com/docs/core/virtualization/architecture
- Extends Linux KVM with protected VM feature
- Supports both ARM and x86 64

https://source.android.com/docs/core/virtualization/architecture

When to migrate and when to isolate?

OOLATE
@ o
- Virtualization P‘\’s

BV
- A”dro'd Virtua B\—E 1 zation/architecture
: Exte r? E\I\\ \(WE\G“ \—E‘I\

https://source.android.com/docs/core/virtualization/architecture

When to migrate and when to isolate?

@ —» ISOLATE
- Process level-sandboxing

- Separate high and low privilege components in separate OS processes
- Used by most modern browsers
- Highly portable and mature isolation strategy

- Non-trivial to apply to monolithic applications

When

Az

‘ 5,

)y

eNICMA

@

¢

iz

https://www.usenix.org/conference/enigma2021/presentation/palmer

THE LIMITS OF SANDBOXING AND NEXT
STEPS

Note: Presentation times are in Pacific Standard Time (PST).

Wednesday, February 03, 2021 - 9:50 am-10:20 am
Chris Palmer, Google Chrome Security

Abstract:

Privilege separation and reduction ("sandboxing") has significantly improved software security, and in many
applications is a baseline requirement for safe design. (In fact, there are still many applications that can and
should adopt sandboxing.)

Although necessary, sandboxing is not sufficient by itself. The designs and implementations of real-world
operating systems put a ceiling on the effectiveness and applicability of sandboxing. From years of experience
shipping Chromium, we have learned that (1) Chromium is at or near the limit of how much safety it can
practically provide with privilege separation and reduction; and (2) we still need to provide greater resilience.

Therefore, we must find and develop additional security mechanisms. Our primary approach is now working
toward increased memory safety. Where sandboxing limits the value attackers gain from exploiting
vulnerabilities, memory-safe(r) code can eliminate vulnerabilities altogether or make it infeasible to use them in
an exploit chain.

Ses

https://www.usenix.org/conference/enigma2021/presentation/palmer

@ eNICMA

When

https://www.usenix.org/conference/enigma2021/presentation/palmer

applicability of sandboxing. From years of experience shipping Chromium, we have

learned that (1) Chromium is at or near the limit of how much safetx it can Eracticallx

provide with privilege separation and reduction; and (2) we still need to provide greater
resilience.

Therefore, we must find and develop additional security mechanisms. Our primary
aeeroach IS now working toward increased memory safetx. Where sandboxing limits the

value attackers gain from exploiting vulnerabilities, memory-safe(r) code can eliminate
vulnerabilities altogether or make it infeasible to use them in an exploit chain.

shipping Chromium, we have learned that (1) Chromium is at or near the limit of how much safety it can
practically provide with privilege separation and reduction; and (2) we still need to provide greater resilience.

Therefore, we must find and develop additional security mechanisms. Our primary approach is now working
toward increased memory safety. Where sandboxing limits the value attackers gain from exploiting
vulnerabilities, memory-safe(r) code can eliminate vulnerabilities altogether or make it infeasible to use them in
an exploit chain.

https://www.usenix.org/conference/enigma2021/presentation/palmer

When to migrate and when to isolate?

@ —» ISOLATE
- Library-level sandboxing

- Avoids the need to split application into multiple processes
- WebAssembly
- RLBox

- https://rlbox.dev/

- Can use WebAssembly or PKRU as backends
- Hardware-assisted library sandboxing

- https://qithub.com/immunant/IA2-Phase2/

https://rlbox.dev/
https://github.com/immunant/IA2-Phase2/

Takeaway
e Memory safe languages delivers assurance that
previous practices lacks.

e Follow the rule of two!
(don’t process untrusted input with unsafe code)

e \We need to dramatically lower the cost of
migrating code to memory safe languages.

SHUKRIA

H
amnv YAQHANYELAY §

s 3 ot TASHAKKUR ATU £

GRACIAS =

Jnmoch G GOZAIMASHITA
<X EFCHARISTO *wr=

NKSCHEEN
BIYAN

Memory Safety

- Means that software or a programming language is designed to catch memory bugs
- Memory safe languages automate memory management only allow safe memory accesses
- Most languages are memory safe

- C/C++ are the only languages that are still widely used but not memory safe
- Prizes efficiency and flexibility, programmer is in full control and has full responsibility
- Routinely used to write low-level, highly-privileged code

- Consequences of Memory Unsafety
- Security vulnerabilities
- Program instability
- Difficult debugging and maintenance
- Further reading
- https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety
- https://www.memorysafety.org/docs/memory-safety/
- https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety/#1
https://www.memorysafety.org/docs/memory-safety/
https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

Further Reading

- https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety
- https://lwww.memorysafety.org/docs/memory-safety/

- https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety/#1
https://www.memorysafety.org/docs/memory-safety/
https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

