
Code Migration &
Memory Safety

CRESP Industry Day, November 14, 2024
Per Larsen, Immunant, Inc.

Who?

- Immunant, Inc.
- Code migration from C to Rust
- Prevention of memory corruption vulnerabilities
- Rust training 🦀

- Per
- CEO at Immunant, Inc.
- Postdoc at University of California, Irvine
- PhD from Technical University of Denmark 󰎴

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

https://www.cisa.gov/resources-tools/resources/product-security-bad-practices

Memory safety

- Means that software or a programming language is designed to catch
memory bugs

Memory safety helps avoid

- Security Vulnerabilities
- 60-90 percent of software flaws in memory unsafe languages
- High fraction of zero-day vulnerabilities

- Program Instability
- Difficult Debugging and Maintenance

Can we make existing C/C++ code memory safe?

In principle, yes. In practice…

Can we make existing C/C++ code memory safe?

Work to make C/C++ safe includes

● Static analysis (Clang Static Analyzer, Coverity, CppCheck, …)
● Exploit mitigations (ASLR, CFI, guard pages, allocator hardening, …)
● Sanitizers (ASan, UBSan, MemorySanitizer, ThreadSanitizer, GWPAsan, …)
● Hardware-assisted techniques (MTE, PAC, PKRU, MPX, CET, CHERI, …)
● Modern C++ (std::unique_ptr, std::shared_ptr, std::weak_ptr, …)
● Language dialects (Cyclone, CheckedC, CCured)

Can we make existing C/C++ code memory safe?

Work to make C/C++ safe includes

● Static analysis (Clang Static Analyzer, Coverity, CppCheck, …)
● Exploit mitigations (ASLR, CFI, guard pages, allocator hardening, …)
● Sanitizers (ASan, UBSan, MemorySanitizer, ThreadSanitizer, GWPAsan, …)
● Hardware-assisted techniques (MTE, PAC, PKRU, MPX, CET, CHERI, …)
● Modern C++ (std::unique_ptr, std::shared_ptr, std::weak_ptr, …)
● Language dialects (Cyclone, CheckedC, CCured)compatibility security

performance

Can we make existing C/C++ code memory safe?

Work to make C/C++ safe includes

● Static analysis (Clang Static Analyzer, Coverity, CppCheck, …)
● Exploit mitigations (ASLR, CFI, guard pages, allocator hardening, …)
● Sanitizers (ASan, UBSan, MemorySanitizer, ThreadSanitizer, GWPAsan, …)
● Hardware-assisted techniques (MTE, PAC, PKRU, MPX, CET, CHERI, …)
● Modern C++ (std::unique_ptr, std::shared_ptr, std::weak_ptr, …)
● Language dialects (Cyclone, CheckedC, CCured)

IS IT WORTH

THE HASSLE?

Can we make existing C/C++ code memory safe?

Microsoft: 70% of all vulnerabilities in their products over the last decade have
been memory safety issues

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language

Can we make existing C/C++ code memory safe?

● Google: 90% of Android vulnerabilities are memory safety issues
● Apple: 60-70% of vulnerabilities in iOS and macOS are memory safety

vulnerabilities
● Alex Gaynor: more than 80% of the exploited zero-day vulnerabilities were

memory safety issues

https://security.googleblog.com/2019/05/queue-hardening-enhancements.htm
https://langui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://langui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

Can we make existing C/C++ code memory safe?

● Google: 90% of Android vulnerabilities are memory safety issues
● Apple: 60-70% of vulnerabilities in iOS and macOS are memory safety

vulnerabilities
● Alex Gaynor: more than 80% of the exploited zero-day vulnerabilities were

memory safety issues

https://security.googleblog.com/2019/05/queue-hardening-enhancements.htm
https://langui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

RETROFITTING

SECURITY WAS

NOT SUFFICIENT

https://security.googleblog.com/2019/05/queue-hardening-enhancements.html
https://langui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160

Chromium’s Rule of Two

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Code operating
on untrusted

inputs

Code written
 in an unsafe

language

Code not run
in sandbox

(high privilege)

DOOM

Chromium’s Rule of Two

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Code operating
on untrusted

inputs

Code written
 in an unsafe

language

Code not
running in
sandbox

MIGRATE ISOLATE

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

When to migrate and when to isolate?

- Buy-in from current developers
- Expertise in source & target language
- Resources available to do the porting
- Resources available to maintain port

- Software isolation overheads tolerable
- Hardware isolation feasible
- Cannot support original and rewritten

versions of same component

MIGRATE ISOLATE

When to migrate and when to isolate?

- Buy-in from current developers
- Expertise in source & target language
- Resources available to do the porting
- Resources available to maintain port

- Software isolation overheads tolerable
- Hardware isolation feasible
- Cannot support original and rewritten

versions of same component

MIGRATE ISOLATE

productivity gains
from modern
languages

meaningful security
benefits in less time

When to migrate and when to isolate?

MIGRATE ISOLATE
- Decide on a memory safe language

- Chromium’s strategy
- Java for Android-specific code
- Swift for iOS-specific code
- Rust for third-party use
- JavaScript or WebAssembly

- C# good option for Microsoft-specific code
- Swift for Apple-specific code

When to migrate and when to isolate?

MIGRATE
Step 1: Decide what to migrate

ISOLATE

When to migrate and when to isolate?

MIGRATE
Step 1: Decide what to migrate

ISOLATE

When to migrate and when to isolate?
MIGRATE ISOLATE

https://www.usenix.org/system/files/sec22-alexopoulos.pdf

https://www.usenix.org/system/files/sec22-alexopoulos.pdf

When to migrate and when to isolate?
MIGRATE ISOLATE

When to migrate and when to isolate?
MIGRATE ISOLATE

1. Most memory safety problems in new code

2. Code gets safer over time, exponentially

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

When to migrate and when to isolate?
MIGRATE ISOLATE

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html

When to migrate and when to isolate?
MIGRATE

Gradual migration → language interoperability

● Different memory management models
● Different type systems
● Different exception handling mechanisms
● Different data structure layouts and representations
● Different meta-programming facilities
● Different build systems
● …

When to migrate and when to isolate?
MIGRATE

Gradual migration → language interoperability

● Interoperability with C is doable
○ Simple type system ↔ complex type system
○ bindgen and cbindgen for Rust

● Interoperability with C++ is hard
○ Complex type system ↔ complex type system
○ Cxx, autocxx, Crubit for Rust

How to migrate a particular module/feature/library?

MANUALLY UNSAFE TRANSLATION

AUTOMATICALLY
- Best when existing code is poorly

structured or lacks sufficient tests
- Not all features need to be ported

- Best when existing code is high quality
and tests have high code coverage

- Drop-in compatibility desired
- Need to keep up with upstream

How to migrate a particular module/feature/library?

MANUALLY SEMI

AUTOMATICALLY
- Best when existing code is poorly

structured or lacks sufficient tests
- Not all features need to be ported

- Best when existing code is high quality
and tests have high code coverage

- Drop-in compatibility desired
- Need to keep up with upstream

How to migrate a particular module/feature/library?

MANUALLY SEMI

AUTOMATICALLY
- Best when existing code is poorly

structured or lacks sufficient tests
- Not all features need to be ported

- Best when existing code is high quality
and tests have high code coverage

- Drop-in compatibility desired
- Need to keep up with upstream

Quick aside on Internet Security Research Group

Josh Aas (Co-Founder) Sarah Gran (VP of Comms)Funders

https://www.memorysafety.org/ and https://isrg.org/

https://www.memorysafety.org/
https://isrg.org/

Porting dav1d from C to Rust using c2rust

C2Rust transpiler example inputs and outputs

Try it out at https://c2rust.com or https://github.com/immunant/c2rust

https://c2rust.com
https://github.com/immunant/c2rust

C2Rust transpiler example inputs and outputs

Try it out at https://c2rust.com or https://github.com/immunant/c2rust

FAR FROM THE

DESIRED OUTPUT

https://c2rust.com
https://github.com/immunant/c2rust

Porting dav1d from C to Rust using c2rust

● Initial transpile took almost no time (~1 day)
○ Transpilation was beneficial w.r.t. testing & tracking upstream changes
○ Transpiler output was ~5x as verbose as input C code

● ~90% time spent “cleaning up” the transpiler output (~12mos)
○ Full test suite run on each commit to catch regressions early
○ Extensive use of C preprocessor macros presented a challenge
○ Threading patterns difficult to translate to Rust efficiently

● ~10% time spent optimizing, handling language differences, CI config, etc.
○ Difficult to track down where we lost performance vs. the C version

■ Currently seeing a ~6% overhead on x86_64
○ Details https://www.memorysafety.org/blog/rav1d-performance-optimization/

https://www.memorysafety.org/blog/rav1d-performance-optimization/

Porting dav1d from C to Rust using c2rust

● Initial transpile took almost no time (~1 day)
○ Transpilation was beneficial w.r.t. testing & tracking upstream changes

● ~90% time spent “cleaning up” the transpiler output (~12mos)
○ Full test suite run on each commit to catch regressions early
○ Extensive use of C preprocessor macros presented a challenge
○ Threading patterns difficult to translate to Rust efficiently

● ~10% time spent optimizing, handling language differences, CI config, etc.
○ Difficult to track down where we lost performance vs. the C version

■ Currently seeing a 6% overhead on x86_64

WE NEED MORE

AUTOMATION TO

LOWER COSTS

Lifting C code to Safe Rust

- Use static analysis to identify lifting
opportunities

- Use dynamic analysis to augment
static analysis

- Combine results in to pointer
derivation graph

- Assign permissions to pointers
- Rewriting engine maps C types to

safe Rust types

x

- Use static analysis to identify lifting
opportunities

- Use dynamic analysis to augment
static analysis

- Combine results in to pointer
derivation graph

- Assign permissions to pointers
- Rewriting engine maps C types to

safe Rust types

Lifting C code to Safe Rust
Write Unique Free Offset Ptr type

&T

✓ ✓ &mut T

✓ Cell<T>

✓ &[T]

✓ ✓ ✓ &mut [T]

✓/✗ ✓ ✓ Box

✓/✗ ✓ ✓ ✓ Box<[T]>

x

Heap Allocations

pub fn buffer_init() -> DynOwned<Box<buffer>> {

 // was: calloc(1, size_of::<buffer>())

 let b: DynOwned<Box<buffer>> =

 DynOwned::new(Box::new(buffer {

 ptr: None,

 used: 0,

 size: 0,

 }));

 return b.take();

}

(DynOwned<T> tracks ownership dynamically, like Option<T>)

pub struct buffer {

 // was: *mut i8

 pub ptr: Option<DynOwned<Box<[i8]>>>,

 pub used: u32,

 pub size: u32,

}

x

Heap Allocations

pub fn buffer_init() -> DynOwned<Box<buffer>> {

 // was: calloc(1, size_of::<buffer>())

 let b: DynOwned<Box<buffer>> =

 DynOwned::new(Box::new(buffer {

 ptr: None,

 used: 0,

 size: 0,

 }));

 return b.take();

}

(DynOwned<T> tracks ownership dynamically, like Option<T>)

pub struct buffer {

 // was: *mut i8

 pub ptr: Option<DynOwned<Box<[i8]>>>,

 pub used: u32,

 pub size: u32,

}

x

SCALING PROGRAM

ANALYSIS AND

REFACTORING IS HARD

DARPA TRACTOR

https://www.darpa.mil/program/translating-all-c-to-rust

https://www.darpa.mil/program/translating-all-c-to-rust

When to migrate and when to isolate?

MIGRATE
- Hardware-based isolation

- CHERI
- TrustZone
- Intel SGX
- AMD SVM
- (Apple Secure Enclave)

ISOLATE

When to migrate and when to isolate?

MIGRATE
- Hardware-based isolation

- CHERI
- TrustZone
- Intel SGX
- AMD SVM
- (Apple Secure Enclave)

ISOLATE

NOT PORTABLE

ACROSS DIFFERENT

PROCESSORS

When to migrate and when to isolate?

MIGRATE
- Virtualization

- Android Virtualization Framework
- https://source.android.com/docs/core/virtualization/architecture

- Extends Linux KVM with protected VM feature
- Supports both ARM and x86_64

ISOLATE

https://source.android.com/docs/core/virtualization/architecture

When to migrate and when to isolate?

MIGRATE ISOLATE
- Virtualization

- Android Virtualization Framework
- https://source.android.com/docs/core/virtualization/architecture

- Extends Linux KVM with protected VM feature
- Supports both ARM and x86_64

FLEXIBLE BUT ALSO

HEAVYWEIGHT AND

HIGHLY COMPLEX

https://source.android.com/docs/core/virtualization/architecture

When to migrate and when to isolate?

MIGRATE
- Process level-sandboxing

- Separate high and low privilege components in separate OS processes
- Used by most modern browsers
- Highly portable and mature isolation strategy

- Non-trivial to apply to monolithic applications

ISOLATE

When to migrate and when to isolate?

MIGRATE
- Process level-sandboxing

- Separate high and low privilege components in separate OS processes
- Used by most modern browsers
- Highly portable and mature isolation strategy

- Non-trivial to apply to monolithic applications

ISOLATE
https://www.usenix.org/conference/enigma2021/presentation/palmer

https://www.usenix.org/conference/enigma2021/presentation/palmer

When to migrate and when to isolate?

MIGRATE
- Process level-sandboxing

- Separate high and low privilege components in separate OS processes
- Used by most modern browsers
- Highly portable and mature isolation strategy

- Non-trivial to apply to monolithic applications

ISOLATE
https://www.usenix.org/conference/enigma2021/presentation/palmer

https://www.usenix.org/conference/enigma2021/presentation/palmer

When to migrate and when to isolate?

MIGRATE
- Library-level sandboxing

- Avoids the need to split application into multiple processes
- WebAssembly
- RLBox

- https://rlbox.dev/
- Can use WebAssembly or PKRU as backends

- Hardware-assisted library sandboxing
- https://github.com/immunant/IA2-Phase2/

ISOLATE

https://rlbox.dev/
https://github.com/immunant/IA2-Phase2/

Takeaway

● Memory safe languages delivers assurance that
previous practices lacks.

● Follow the rule of two!
(don’t process untrusted input with unsafe code)

● We need to dramatically lower the cost of
migrating code to memory safe languages.

Memory Safety

- Means that software or a programming language is designed to catch memory bugs
- Memory safe languages automate memory management only allow safe memory accesses
- Most languages are memory safe
- C/C++ are the only languages that are still widely used but not memory safe

- Prizes efficiency and flexibility, programmer is in full control and has full responsibility
- Routinely used to write low-level, highly-privileged code

- Consequences of Memory Unsafety
- Security vulnerabilities
- Program instability
- Difficult debugging and maintenance

- Further reading
- https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety
- https://www.memorysafety.org/docs/memory-safety/
- https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety/#1
https://www.memorysafety.org/docs/memory-safety/
https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

Further Reading

- https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety
- https://www.memorysafety.org/docs/memory-safety/
- https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety/#1
https://www.memorysafety.org/docs/memory-safety/
https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf

