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Who?  

- Immunant, Inc.
- Code migration from C to Rust
- Prevention of memory corruption vulnerabilities
- Rust training 🦀

- Per
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- Postdoc at University of California, Irvine
- PhD from Technical University of Denmark 󰎴
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Memory safety

- Means that software or a programming language is designed to catch 
memory bugs

 



Memory safety helps avoid

- Security Vulnerabilities
- 60-90 percent of software flaws in memory unsafe languages
- High fraction of zero-day vulnerabilities

- Program Instability
- Difficult Debugging and Maintenance



Can we make existing C/C++ code memory safe?

In principle, yes. In practice… 
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THE HASSLE?



Can we make existing C/C++ code memory safe?

Microsoft: 70% of all vulnerabilities in their products over the last decade have 
been memory safety issues 

https://msrc.microsoft.com/blog/2019/07/we-need-a-safer-systems-programming-language 
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Can we make existing C/C++ code memory safe?

● Google: 90% of Android vulnerabilities are memory safety issues
● Apple: 60-70% of vulnerabilities in iOS and macOS are memory safety 

vulnerabilities
● Alex Gaynor: more than 80% of the exploited zero-day vulnerabilities were 

memory safety issues

https://security.googleblog.com/2019/05/queue-hardening-enhancements.htm
https://langui.sh/2019/07/23/apple-memory-safety/
https://twitter.com/LazyFishBarrel/status/1129000965741404160 
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RETROFITTING

SECURITY WAS 

NOT SUFFICIENT
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Chromium’s Rule of Two

https://chromium.googlesource.com/chromium/src/+/master/docs/security/rule-of-2.md

Code operating 
on untrusted 

inputs

Code written
 in an unsafe 

language

Code not run
in sandbox

(high privilege)

DOOM
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MIGRATE ISOLATE
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When to migrate and when to isolate?

- Buy-in from current developers
- Expertise in source & target language
- Resources available to do the porting
- Resources available to maintain port

- Software isolation overheads tolerable
- Hardware isolation feasible
- Cannot support original and rewritten 

versions of same component

MIGRATE ISOLATE
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productivity gains 
from modern 
languages 

meaningful security
benefits in less time



When to migrate and when to isolate?

MIGRATE ISOLATE
- Decide on a memory safe language

- Chromium’s strategy
- Java for Android-specific code
- Swift for iOS-specific code
- Rust for third-party use 
- JavaScript or WebAssembly 

- C# good option for Microsoft-specific code
- Swift for Apple-specific code



When to migrate and when to isolate?

MIGRATE
Step 1: Decide what to migrate

ISOLATE
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When to migrate and when to isolate?
MIGRATE ISOLATE

https://www.usenix.org/system/files/sec22-alexopoulos.pdf 
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When to migrate and when to isolate?
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When to migrate and when to isolate?
MIGRATE ISOLATE

1. Most memory safety problems in new code 

2. Code gets safer over time, exponentially

https://security.googleblog.com/2024/09/eliminating-memory-safety-vulnerabilities-Android.html 
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When to migrate and when to isolate?
MIGRATE ISOLATE
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When to migrate and when to isolate?
MIGRATE

Gradual migration → language interoperability

● Different memory management models
● Different type systems
● Different exception handling mechanisms
● Different data structure layouts and representations
● Different meta-programming facilities
● Different build systems
● …



When to migrate and when to isolate?
MIGRATE

Gradual migration → language interoperability

● Interoperability with C is doable
○ Simple type system ↔ complex type system
○ bindgen and cbindgen for Rust

● Interoperability with C++ is hard
○ Complex type system ↔ complex type system
○ Cxx, autocxx, Crubit for Rust



How to migrate a particular module/feature/library?

MANUALLY UNSAFE TRANSLATION

AUTOMATICALLY
- Best when existing code is poorly 

structured or lacks sufficient tests
- Not all features need to be ported

- Best when existing code is high quality 
and tests have high code coverage

- Drop-in compatibility desired
- Need to keep up with upstream
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Quick aside on Internet Security Research Group

Josh Aas (Co-Founder)        Sarah Gran (VP of Comms)Funders

https://www.memorysafety.org/ and https://isrg.org/ 

https://www.memorysafety.org/
https://isrg.org/


Porting dav1d from C to Rust using c2rust



C2Rust transpiler example inputs and outputs

Try it out at https://c2rust.com or https://github.com/immunant/c2rust 

https://c2rust.com
https://github.com/immunant/c2rust


C2Rust transpiler example inputs and outputs

Try it out at https://c2rust.com or https://github.com/immunant/c2rust 

FAR FROM THE 

DESIRED OUTPUT

https://c2rust.com
https://github.com/immunant/c2rust


Porting dav1d from C to Rust using c2rust

● Initial transpile took almost no time (~1 day)
○ Transpilation was beneficial w.r.t. testing & tracking upstream changes
○ Transpiler output was ~5x as verbose as input C code 

● ~90% time spent “cleaning up” the transpiler output (~12mos)
○ Full test suite run on each commit to catch regressions early
○ Extensive use of C preprocessor macros presented a challenge
○ Threading patterns difficult to translate to Rust efficiently

● ~10% time spent optimizing, handling language differences, CI config, etc.
○ Difficult to track down where we lost performance vs. the C version

■ Currently seeing a ~6% overhead on x86_64
○ Details https://www.memorysafety.org/blog/rav1d-performance-optimization/ 

https://www.memorysafety.org/blog/rav1d-performance-optimization/
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AUTOMATION TO

LOWER COSTS



Lifting C code to Safe Rust

- Use static analysis to identify lifting 
opportunities

- Use dynamic analysis to augment 
static analysis

- Combine results in to pointer 
derivation graph

- Assign permissions to pointers
- Rewriting engine maps C types to 

safe Rust types

x



- Use static analysis to identify lifting 
opportunities

- Use dynamic analysis to augment 
static analysis

- Combine results in to pointer 
derivation graph

- Assign permissions to pointers
- Rewriting engine maps C types to 

safe Rust types

Lifting C code to Safe Rust
Write Unique Free Offset Ptr type

&T

✓ ✓ &mut T

✓ Cell<T>

✓ &[T]

✓ ✓ ✓ &mut [T]

✓/✗ ✓ ✓ Box

✓/✗ ✓ ✓ ✓ Box<[T]>

x



Heap Allocations

pub fn buffer_init() -> DynOwned<Box<buffer>> {

    // was: calloc(1, size_of::<buffer>())

    let b: DynOwned<Box<buffer>> =

        DynOwned::new(Box::new(buffer {

            ptr: None,

            used: 0,

            size: 0,

        }));

    return b.take();

}

(DynOwned<T> tracks ownership dynamically, like Option<T>)

pub struct buffer {

    // was: *mut i8

    pub ptr: Option<DynOwned<Box<[i8]>>>,

    pub used: u32,

    pub size: u32,

}

x
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SCALING PROGRAM 

ANALYSIS AND 

REFACTORING IS HARD



DARPA TRACTOR

https://www.darpa.mil/program/translating-all-c-to-rust 

https://www.darpa.mil/program/translating-all-c-to-rust




When to migrate and when to isolate?

MIGRATE
- Hardware-based isolation

- CHERI
- TrustZone
- Intel SGX
- AMD SVM
- (Apple Secure Enclave)

ISOLATE



When to migrate and when to isolate?

MIGRATE
- Hardware-based isolation

- CHERI
- TrustZone
- Intel SGX
- AMD SVM
- (Apple Secure Enclave)

ISOLATE

NOT PORTABLE 

ACROSS DIFFERENT

PROCESSORS



When to migrate and when to isolate?

MIGRATE
- Virtualization

- Android Virtualization Framework
- https://source.android.com/docs/core/virtualization/architecture 

- Extends Linux KVM  with protected VM feature
- Supports both ARM and x86_64

ISOLATE
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MIGRATE ISOLATE
- Virtualization

- Android Virtualization Framework
- https://source.android.com/docs/core/virtualization/architecture 

- Extends Linux KVM  with protected VM feature
- Supports both ARM and x86_64

FLEXIBLE BUT ALSO

HEAVYWEIGHT AND 

HIGHLY COMPLEX
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When to migrate and when to isolate?

MIGRATE
- Process level-sandboxing

- Separate high and low privilege components in separate OS processes
- Used by most modern browsers
- Highly portable and mature isolation strategy 

- Non-trivial to apply to monolithic applications
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When to migrate and when to isolate?

MIGRATE
- Library-level sandboxing

- Avoids the need to split application into multiple processes
- WebAssembly
- RLBox

- https://rlbox.dev/ 
- Can use WebAssembly or PKRU as backends

- Hardware-assisted library sandboxing
- https://github.com/immunant/IA2-Phase2/ 

ISOLATE

https://rlbox.dev/
https://github.com/immunant/IA2-Phase2/


Takeaway

● Memory safe languages delivers assurance that 
previous practices lacks.

● Follow the rule of two! 
(don’t process untrusted input with unsafe code)

● We need to dramatically lower the cost of 
migrating code to memory safe languages.





Memory Safety

- Means that software or a programming language is designed to catch memory bugs
- Memory safe languages automate memory management only allow safe memory accesses
- Most languages are memory safe
- C/C++ are the only languages that are still widely used but not memory safe

- Prizes efficiency and flexibility, programmer is in full control and has full responsibility
- Routinely used to write low-level, highly-privileged code

- Consequences of Memory Unsafety
- Security vulnerabilities
- Program instability
- Difficult debugging and maintenance

- Further reading
- https://www.internetsociety.org/resources/doc/2023/how-to-talk-to-your-manager-about-memory-safety 
- https://www.memorysafety.org/docs/memory-safety/ 
- https://storage.googleapis.com/gweb-research2023-media/pubtools/7665.pdf 
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